Normal view MARC view ISBD view

Introduction to the h-principle / Y. Eliashberg, N. Mishachev

Auteur principal : Eliashberg, Yakov Matveevich, 1946-, AuteurCo-auteur : Mishachev, Nikolai M., 1952-, AuteurType de document : MonographieCollection : Graduate studies in mathematics, 48Langue : anglais.Pays : Etats Unis.Éditeur : Providence, RI : American Mathematical Society, 2002Description : 1 vol. (XVII-206 p.) : ill. ; 26 cmISBN : 0821832271.ISSN : 1065-7339.Bibliographie : Bibliogr. p. 199-202. Index.Sujet MSC : 58Axx, Global analysis, analysis on manifolds, General theory of differentiable manifolds
58-02, Global analysis, analysis on manifolds, Research exposition (monographs, survey articles)
53Dxx, Differential geometry, Symplectic geometry, contact geometry
En-ligne : MathSciNet | AMS
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Salle R
58 ELI (Browse shelf) Available 02370-01

The authors cover two main methods for proving the h-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the h-principle can be treated by the methods considered here. A special emphasis in the book is made on applications to symplectic and contact geometry. (AMS)

Bibliogr. p. 199-202. Index

There are no comments for this item.

Log in to your account to post a comment.