Rational representations, the Steenrod algebra and Functor homology / Vincent Franjou, Eric M. Friedlander, Teimuraz Pirashvili... [et al.]
Type de document : MonographieCollection : Panoramas et synthèses, 16Langue : français ; anglais.Pays: France.Éditeur : Paris : Société mathématique de France, 2003Description : 1 vol. (xxi-132 p.) ; 24 cmISBN: 2856291597.ISSN: 1272-3835.Bibliographie : Références bibliographiques en fin de contributions. Index.Sujet MSC : 18G90, Homological algebra in category theory, derived categories and functors, Other (co)homology theories14L15, Algebraic geometry - Algebraic groups, Group schemesEn-ligne : Sommaire Item type:

Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|
CMI Couloir | Séries Panor 16 (Browse shelf(Opens below)) | Available | 02847-01 |
Publisher's description: The book presents aspects of homological algebra in functor categories, with emphasis on polynomial functors between vector spaces over a finite field. With these foundations in place, the book presents applications to representation theory, algebraic topology and K-theory. As these applications reveal, functor categories offer powerful computational techniques and theoretical insights. T. Pirashvili sets the stage with a discussion of foundations. E. Friedlander then presents applications to the rational representations of general linear groups. L. Schwartz emphasizes the relation of functor categories to the Steenrod algebra. Finally, V. Franjou and T. Pirashivili present A. Scorichenko's understanding of the stable K-theory of rings as functor homology.
Références bibliographiques en fin de contributions. Index
There are no comments on this title.