Backlund and Darboux transformations : geometry and modern applications in soliton theory / C. Rogers, W. K. Schief
Type de document : MonographieCollection : Cambridge texts in applied mathematicsLangue : anglais.Pays: Grande Bretagne.Éditeur : Cambridge : Cambridge University Press, 2002Description : 10 vol. (413 p.) : ill. ; 23 cmISBN: 9780521012881.Bibliographie : Bibliogr. p. 383-401. Index.Sujet MSC : 53-02, Research exposition (monographs, survey articles) pertaining to differential geometry53A10, Classical differential geometry, Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42, Global differential geometry, Differential geometry of immersions
37K35, Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems, Lie-Bäcklund and other transformations
58J35, Global analysis, analysis on manifolds - PDEs on manifolds; differential operators, Heat and other parabolic equation methodsEn-ligne : Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Monographie | CMI Salle 1 | 53 ROG (Browse shelf(Opens below)) | Available | 03668-01 |
The aim of this monograph is to use Bäcklund-Darboux transformations to provide an introductory text in modern soliton theory, connected with the classical differential geometry of surfaces. The first chapter is devoted to the pseudo-spherical surfaces, the classical Bäcklund transformations and the Bianchi system. The second chapter is concerned with how certain motions of privileged curves and surfaces can lead to solitonic equations. In chapter 3, the classical surfaces of Tzitzeica (the Romanian geometer who initiated affine geometry) have an underlying soliton connection.
Chapter 4 is devoted to the nonlinear Schrödinger Equation and chapter 5 is concerned with another class of surfaces which have a soliton connection, namely isothermic surfaces. Chapter 6 introduces the key Sym-Tafel formula for the construction of soliton surfaces associated with an su(2) linear representation. Chapter 7 establishes the important connection between Bäcklund transformations and matrix Darboux transformations. Chapter 8 deals with the geometric properties of important soliton system which admit non-isospectral linear representation. Chapter 9 describes developments in soliton theory which are linked to the geometry of projective-minimal and isothermal-asymptotic surfaces. (Zentralblatt)
Bibliogr. p. 383-401. Index
There are no comments on this title.