Systèmes intégrables semi-classiques : du local au global / San Vu Ngoc
Type de document : MonographieCollection : Panoramas et synthèses, 22Langue : français.Pays: France.Éditeur : Paris : Société Mathématique de France, 2006Description : 1 vol. (VI-156 p.) ; 24 cmISBN: 9782856292211.ISSN: 1272-3835.Bibliographie : Bibliogr. p. [141]-151. Notes bibliogr. Index.Sujet MSC : 81Q20, General mathematical topics and methods in quantum theory, Semiclassical techniques, including WKB and Maslov methods37J35, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems, Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J40, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems, Perturbations, normal forms, small divisors, KAM theory, Arnol'd diffusion
37J11, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems, Symplectic and canonical mappings
37N20, Applications of dynamical systems, Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)En-ligne : Sommaire
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Monographie | CMI Salle 1 | Séries Panor 22 (Browse shelf(Opens below)) | Available | 04566-01 |
Bibliogr. p. [141]-151. Notes bibliogr. Index
The text is divided into six chapters with the following titles: Introduction; Introduction to semi-classical analysis; Fundamental examples of integrable systems; Local theory; Semi-global theory; Global theory. A number of 32 figures and a rich bibliography with 168 titles offer an impressive picture of the contents. The framework of classical aspects is provided by a symplectic structure through the associated Poisson bracket while the main geometrical object is a singular Lagrangian foliation whose regular leaves are the well-known Liouville tori. Quantum integrable systems are handled with the tools of semi-classical microlocal analysis and the powerful methods of pseudo-differential calculus and Fourier integral operators yield new and very important features of these systems. (Zentralblatt)
There are no comments on this title.