Riemannian geometry : a modern introduction / Isaac Chavel

Auteur principal : Chavel, Isaac, 1939-, AuteurType de document : MonographieCollection : Cambridge studies in advanced mathematics, 98Langue : anglais.Pays: Etats Unis.Mention d'édition: 2nd editionÉditeur : Cambridge : Cambridge University Press, 2006Description : 1 vol. (XVI-471 p.) ; 24 cmISBN: 0521619548.ISSN: 0950-6330.Bibliographie : Bibliogr. p. 449-464. Index.Sujet MSC : 53-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to differential geometry
53C65, Global differential geometry, Integral geometry; differential forms, currents, etc.
53C20, Global differential geometry, Global Riemannian geometry, including pinching
En-ligne : Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
53 CHA (Browse shelf(Opens below)) Available 05075-01

I. Riemannian manifolds, II. Riemannian curvature, III. Riemannian volume, IV. Riemannian coverings, V. Surfaces, VI. Isoperimetric inequalities (constant curvature), VII. The kinematic density, VIII. Isoperimetric inequalities (variable curvature), IX. Comparison and finiteness theorems.

Bibliogr. p. 449-464. Index

Chapters 1 to 5 present basic notions of classical Riemannian geometry, such as connections, curvature, geodesics, metrics, Jacobi fields, submanifolds, fundamental group, coverings, Gauss-Bonnet theorem of surfaces etc. The sixth chapter treats the Brunn-Minkowski theorem, the solvability of the Neumann problem in ℝ n , Gromov’s uniqueness proof.

The seventh chapter is devoted to differential geometry of analytical dynamics, Berger-Kazdan inequalities, Santalo’s formula. The eighth chapter treats Goke’s isoperimetric inequality, Buser’s isoperimetric inequality, and isoperimetric constants. The ninth chapter is devoted to comparision and finiteness theorems: Rauch’s comparison theorem, triangle comparison theorem, Cheeger’s finiteness theorem etc. There are sections of notes and exercises at the end of each chapter of the book. The bibliography contains all classical works on this subject. (Zentralblatt)

There are no comments on this title.

to post a comment.