Composition operators on Hardy-Orlicz spaces / Pascal Lefèvre, Daniel Li, Hervé Queffélec... [et al.]
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 974Langue : anglais.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, 2010Description : 1 vol. (V-74 p.) ; 26 cmISBN: 9780821846377.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 73-74.Sujet MSC : 47B33, Operator theory - Special classes of linear operators, Linear composition operators46E30, Functional analysis - Linear function spaces and their duals, Spaces of measurable functions
47-02, Research exposition (monographs, survey articles) pertaining to operator theoryEn-ligne : ArXiv
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 06798-01 |
Bibliogr. p. 73-74
The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Ψ grows rapidly: compactness, weak compactness, to be p-summing, order bounded, ..., and show how these notions behave according to the growth of Ψ. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces. (Source : AMS)
There are no comments on this title.