Robin functions for complex manifolds and applications / Kang-Tae Kim, Norman Levenberg, Hiroshi Yamaguchi
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 984Langue : anglais.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, 2011Description : 1 vol. (VII-111 p.) ; 26 cmISBN: 9780821849651.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 111.Sujet MSC : 32-02, Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces32U10, Several complex variables and analytic spaces - Pluripotential theory, Plurisubharmonic exhaustion functions
32M05, Complex spaces with a group of automorphisms, Complex Lie groups, group actions on complex spaces
32Q15, Several complex variables and analytic spaces - Complex manifolds, Kähler manifolds
32Q28, Several complex variables and analytic spaces - Complex manifolds, Stein manifolds
32U05, Several complex variables and analytic spaces - Pluripotential theory, Plurisubharmonic functions and generalizationsEn-ligne : ArXiv
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 06811-01 |
Bibliogr. p. 111
In a previous Memoirs (Vol. 92, No. 448), Levenberg and Yamaguchi analyzed the second variation of the Robin function -λ(t) associated to a smooth variation of domains in ℂn for n ≥ 2. In the current work, the authors study a generalization of this second variation formula to complex manifolds M equipped with a Hermitian metric ds2 and a smooth, nonnegative function c. (Source : AMS)
There are no comments on this title.