The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p,q) / Toshiyuki Kobayashi, Gen Mano
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 1000Langue : anglais.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, 2011Description : 1 vol. (V-132 p.) : fig. ; 26 cmISBN: 9780821847572.ISSN: 0065-9266.Bibliographie : Bibliogr. p.125-128. Index.Sujet MSC : 22-02, Research exposition (monographs, survey articles) pertaining to topological groups22E30, Lie groups, Analysis on real and complex Lie groups
43A80, Abstract harmonic analysis, Analysis on other specific Lie groups
22E46, Lie groups, Semisimple Lie groups and their representationsEn-ligne : ArXiv
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 06812-01 |
Bibliogr. p.125-128. Index
The authors introduce a generalization of the Fourier transform, denoted by Fc, on the isotropic cone C associated to an indefinite quadratic form of signature (n 1 ,n 2 ) on ℝ n (n = n 1 + n 2 : even). This transform is in some sense the unique and natural unitary operator on L2(C), as is the case with the Euclidean Fourier transform Fℝn on L2(ℝn). Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the L2-model of the minimal representation of the simple Lie group G=O(n1+1, n2+1) on the other hand. (Source : AMS)
There are no comments on this title.