Elementary feedback stabilization of the linear reaction-convection-diffusion equation and the wave equation / Weijiu Liu

Auteur principal : Liu, Weijiu, AuteurType de document : MonographieCollection : Mathématiques et applications, 66Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer-Verlag, 2010Description : 1 vol. (X-294 p.) ; 24 cmISBN: 9783642046124.ISSN: 1154-483X.Bibliographie : Bibliogr. p. 287-292. Notes bibliographiques en fin de chapitres. Index.Sujet MSC : 93-02, Research exposition (monographs, survey articles) pertaining to systems and control theory
35Q93, PDEs of mathematical physics and other areas of application, PDEs in connection with control and optimization
35-00, General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to partial differential equations
93D15, Stability of control systems, Stabilization of systems by feedback
49-02, Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control
En-ligne : Springerlink
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
Séries SMA (Browse shelf(Opens below)) Available 07055-01

Bibliogr. p. 287-292. Notes bibliographiques en fin de chapitres. Index

This book addresses the feedback stabilization of the linear reaction-convection-diffusion equation and the linear wave equation. Both interior and boundary control problems are discussed. Methods employed to handle the problems include the eigenfunction expansion, integral transform, perturbed energy method, and optimal control technique. These powerful methods are frequently used for solving control problems of partial differential equations. Unlike the existing advanced control theory books written in an abstract setting, this book presents control theory by means of concrete examples. Therefore, this book is easy to read. Once readers learn about the ideas and methods from these concrete control examples, they can apply them to solve other control problems of partial differential equations. (Source : 4ème de couverture)

There are no comments on this title.

to post a comment.