Affine insertion and Pieri rules for the affine Grassmannian / Thomas Lam, Luc Lapointe, Jennifer Morse,... [et al.]
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 977Langue : anglais.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, 2010Description : 1 vol. (XI-82 p.) : fig. ; 26 cmISBN: 9780821846582.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 81-82.Sujet MSC : 14-02, Research exposition (monographs, survey articles) pertaining to algebraic geometry14N15, Projective and enumerative algebraic geometry, Classical problems, Schubert calculus
05E14, Algebraic combinatorics, Combinatorial aspects of algebraic geometryEn-ligne : Arxiv | Site de l'auteur
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 08601-01 |
Bibliogr. p. 81-82
The authors study combinatorial aspects of the Schubert calculus of the affine Grassmannian Gr associated with SL(n,C).Their main results are:
- Pieri rules for the Schubert bases of H*(Gr) and H∗(Gr), which expresses the product of a special Schubert class and an arbitrary Schubert class in terms of Schubert classes.
- A new combinatorial definition for k-Schur functions, which represent the Schubert basis of H∗(Gr).
- A combinatorial interpretation of the pairing H*(Gr)×H∗(Gr)→Z induced by the cap product. (Source : AMS)
There are no comments on this title.