Algebraic functions and projective curves / David M. Goldschmidt
Type de document : MonographieCollection : Graduate texts in mathematics, 215Langue : anglais.Pays: Etats Unis.Éditeur : New York : Springer, cop. 2003Description : 1 vol. (XVI-179 p.) ; 24 cmISBN: 9780387954325.ISSN: 0072-5285.Bibliographie : Bibliogr. p. 175-176. Index.Sujet MSC : 14H05, Curves in algebraic geometry, Algebraic functions and function fields11R42, Algebraic number theory: global fields, Zeta functions and L-functions of number fields
11R58, Algebraic number theory: global fields, Arithmetic theory of algebraic function fields
14G10, Arithmetic problems in algebraic geometry. Diophantine geometry, Zeta functions and related questions
14G50, Arithmetic problems in algebraic geometry. Diophantine geometry, Applications to coding theory and cryptography of arithmetic geometryEn-ligne : Springerlink
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 14 GOL (Browse shelf(Opens below)) | Available | 03938-01 |
Bibliogr. p. 175-176. Index
This book provides a self-contained exposition of the theory of algebraic curves without requiring any of the prerequisites of modern algebraic geometry. The self-contained treatment makes this important and mathematically central subject accessible to non-specialists. At the same time, specialists in the field may be interested to discover several unusual topics. Among these are Tates theory of residues, higher derivatives and Weierstrass points in characteristic p, the Stöhr--Voloch proof of the Riemann hypothesis, and a treatment of inseparable residue field extensions. Although the exposition is based on the theory of function fields in one variable, the book is unusual in that it also covers projective curves, including singularities and a section on plane curves. (Source : Springer)
There are no comments on this title.