Kodaira-Spencer maps in local algebra / Bernd Herzog
Type de document : MonographieCollection : Lecture notes in mathematics, 1597Langue : anglais.Pays: Allemagne.Éditeur : Berlin, Heidelberg : Springer, cop. 1994Description : 1 vol. (XVII-176 p.) ; 24 cmISBN: 354058790X.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 171-172. Index.Sujet MSC : 13D40, Homological methods in commutative ring theory, Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series13D10, Homological methods in commutative ring theory, Deformations and infinitesimal methods
13-02, Research exposition (monographs, survey articles) pertaining to commutative algebra
14B12, Local theory in algebraic geometry, Local deformation theory, Artin approximation, etc.
14A05, Foundations of algebraic geometry, Relevant commutative algebraEn-ligne : sur Springer Link
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 13 HER (Browse shelf(Opens below)) | Available | 08261-01 |
Bibliogr. p. 171-172. Index
The monograph contributes to Lech's inequality - a 30-year-old problem of commutative algebra, originating in the work of Serre and Nagata, that relates the Hilbert function of the total space of an algebraic or analytic deformation germ to the Hilbert function of the parameter space.
A weakened version of Lech's inequality is proved using a construction that can be considered as a local analog of the Kodaira-Spencer map known from the deformation theory of compact complex manifolds. The methods are quite elementary, and will be of interest for researchers in deformation theory, local singularities and Hilbert functions. (Source : Springer)
There are no comments on this title.