Theory and applications of Volterra operators in Hilbert space / I. C. Gohberg, M. G. Kreĭn ; [translated from the russian by A. Feinstein]
Traduction de: Теория вольтерровых операторов в гильбертовом пространстве и ее приложенияType de document : MonographieCollection : Translations of mathematical monographs, 24Langue : anglais ; de l'oeuvre originale, russe.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, cop. 1970Description : 1 vol. (X-430 p.) ; 26 cmISBN: 0821836277.ISSN: 0065-9282.Bibliographie : Bibliogr. p. 405-417. Index.Sujet MSC : 47Axx, Operator theory - General theory of linear operators47Bxx, Operator theory - Special classes of linear operators
47Lxx, Operator theory - Linear spaces and algebras of operators
46Exx, Functional analysis - Linear function spaces and their duals
46Cxx, Functional analysis - Inner product spaces and their generalizations, Hilbert spaces
45Dxx, Integral equations - Volterra integral equationsEn-ligne : AMS | Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 47 GOH (Browse shelf(Opens below)) | Available | 08481-01 |
Bibliogr. p. 405-417. Index
An abstract Volterra operator is, roughly speaking, a compact operator in a Hilbert space whose spectrum consists of a single point λ=0. The theory of abstract Volterra operators, significantly developed by the authors of the book and their collaborators, represents an important part of the general theory of non-self-adjoint operators in Hilbert spaces.
The book, intended for all mathematicians interested in functional analysis and its applications, discusses the main ideas and results of the theory of abstract Volterra operators. Of particular interest to analysts and specialists in differential equations are the results about analytic models of abstract Volterra operators and applications to boundary value problems for ordinary differential equations. (Source : AMS)
There are no comments on this title.