Traveling wave solutions of parabolic systems / Aizik I. Volpert, Vitaly A. Volpert, Vladimir A. Volpert ; [translated by James F. Heyda]

Traduction de: Beguŝie volny, opisyvaemye paraboličeskimi sistemamiAuteur principal : Vol'pert, Aizik Isaakovich, 1923-2006, AuteurCo-auteur : Vol'pert, Vitaly A., 1958-, Auteur • Vol'pert, Vladimir A., 1954-, AuteurAuteur secondaire : Heyda, James F., TraducteurType de document : MonographieCollection : Translations of mathematical monographs, 140Langue : anglais ; de l'oeuvre originale, russe.Pays: Etats Unis.Mention d'édition: Reprinted with correctionsÉditeur : Providence (R.I.) : American Mathematical Society, 2000, cop. 1994Description : 1 vol. (XII-455 p.) : fig. ; 26 cmISBN: 0821811436.ISSN: 0065-9282.Bibliographie : Bibliogr. p. 433-455.Sujet MSC : 35K57, PDEs - Parabolic equations and parabolic systems, Reaction-diffusion equations
80A30, Classical thermodynamics, heat transfer, Chemical kinetics in thermodynamics and heat transfer
92E10, Biology and other natural sciences - Chemistry, Molecular structure
80A25, Classical thermodynamics, heat transfer, Combustion
35B40, Qualitative properties of solutions to partial differential equations, Asymptotic behavior of solutions to PDEs
En-ligne : Zentralblatt | MathSciNet | AMS
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
35 VOL (Browse shelf(Opens below)) Available 09245-01

Trad. de : "Beguŝie volny, opisyvaemye paraboličeskimi sistemami"

Bibliogr. p. 433-455

The theory of traveling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems, their existence, stability, and bifurcations. The main part of the book contains original approaches developed by the authors. Among these are a description of the long-term behavior of the solutions by systems of waves; construction of rotations of vector fields for noncompact operators describing wave solutions; a proof of the existence of waves by the Leray-Schauder method; local, global, and nonlinear stability analyses for some classes of systems; and a determination of the wave velocity by the minimax method and the method of successive approximations. The authors show that wide classes of reaction-diffusion systems can be reduced to so-called monotone and locally monotone systems. This fundamental result allows them to apply the theory to combustion and chemical kinetics. With introductory material accessible to nonmathematicians and a nearly complete bibliography of about 500 references, this book is an excellent resource on the subject. (Source : AMS)

There are no comments on this title.

to post a comment.