Advanced integration theory / by Corneliu Constantinescu, Wolfgang Filter and Karl Weber ; in collaboration with Alexia Sontag

Auteur principal : Constantinescu, Corneliu, 1929-, AuteurCo-auteur : Filter, Wolfgang, 1954-, Auteur • Weber, Karl, 1947-, AuteurAuteur secondaire : Sontag, Alexia, CollaborateurType de document : MonographieCollection : Mathematics and its applications, 454Langue : anglais ; de l'oeuvre originale, allemand.Pays: Pays Bas.Éditeur : Dordrecht : Kluwer, cop. 1998Description : 1 vol. (IX-861 p.) ; 25 cmISBN: 0792352343.ISSN: 0921-3791.Bibliographie : Index.Sujet MSC : 28-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to measure and integration
26-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to real functions
46-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to functional analysis
En-ligne : Springerlink
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
28 CON (Browse shelf(Opens below)) Available 09254-01

Index

This book gives a general definition of the (abstract) integral, using the Daniell method. A most welcome consequence of this approach is the fact that integration theory on Hausdorff topological spaces appears simply to be a special case of abstract integration theory. The most important tool for the development of the abstract theory is the theory of vector lattices which is presented here in great detail. Its consequent application not only yields new insight into integration theory, but also simplifies many proofs. For example, the space of real-valued measures on a delta-ring turns out to be an order complete vector lattice, which permits a coherent development of the theory and the elegant derivation of many classical and new results.
The exercises occupy an important part of the volume. In addition to their usual role, some of them treat separate topics related to vector lattices and integration theory. (Source : Springer)

There are no comments on this title.

to post a comment.