Classical summation in commutative and noncommutative Lp-spaces / Andreas Defant
Type de document : MonographieCollection : Lecture notes in mathematics, 2021Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2011Description : 1 vol. (VIII-171 p.) ; 24 cmISBN: 9783642204371.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 159-163. Index.Sujet MSC : 46-02, Research exposition (monographs, survey articles) pertaining to functional analysis46L51, Functional analysis - Selfadjoint operator algebras, Noncommutative measure and integration
46L52, Functional analysis - Selfadjoint operator algebras, Noncommutative function spaces
46L53, Functional analysis - Selfadjoint operator algebras, Noncommutative probability and statistics
40A30, Sequences, series, summability - Convergence and divergence of infinite limiting processes, Convergence and divergence of series and sequences of functions
42C05, Nontrigonometric harmonic analysis, Orthogonal functions and polynomials, general theoryEn-ligne : Springerlink | Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 46 DEF (Browse shelf(Opens below)) | Available | 12156-01 |
Bibliogr. p. 159-163. Index
The aim of this research is to develop a systematic scheme that makes it possible to transform important parts of the by now classical theory of summation of general orthonormal series into a similar theory for series in noncommutative $L_p$-spaces constructed over a noncommutative measure space (a von Neumann algebra of operators acting on a Hilbert space together with a faithful normal state on this algebra). (Source : Springer)
There are no comments on this title.