Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Type de document : MonographieCollection : Lecture notes in mathematics, 2063Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2013Description : 1 vol. (X-424 p.) ; 24 cmISBN: 9783642326653.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 405-410. Index.Sujet MSC : 35-02, Research exposition (monographs, survey articles) pertaining to partial differential equations31A10, Two-dimensional potential theory, Integral representations, integral operators, integral equations methods in two dimensions
35J58, PDEs - Elliptic equations and elliptic systems, Boundary value problems for higher-order elliptic systemsEn-ligne : Springerlink | Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 35 MIT (Browse shelf(Opens below)) | Available | 12168-01 |
Bibliogr. p. 405-410. Index
This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces. (Source : Springer)
There are no comments on this title.