Method of guiding functions in problems of nonlinear analysis / Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi... [et al.]

Auteur principal : Obukhovskii, Valeri Vladimirovich, 1947-, AuteurCo-auteur : Zecca, Pietro, 1949-, Auteur • Nguyen, Van Loi, 1982-, Auteur • Kornev, Sergei Viktorovich, AuteurType de document : MonographieCollection : Lecture notes in mathematics, 2076Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2013Description : 1 vol. (XIII-177 p.) ; 24 cmISBN: 9783642370694.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 167-173. Index.Sujet MSC : 34-02, Research exposition (monographs, survey articles) pertaining to ordinary differential equations
47-02, Research exposition (monographs, survey articles) pertaining to operator theory
91-02, Research exposition (monographs, survey articles) pertaining to game theory, economics, and finance
En-ligne : Springerlink | Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
34 OBU (Browse shelf(Opens below)) Available 12189-01

Bibliogr. p. 167-173. Index

This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics. (Source : Springer)

There are no comments on this title.

to post a comment.