The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / Ben Andrews, Christopher Hopper

Auteur principal : Andrews, Ben, AuteurCo-auteur : Hopper, Christopher, AuteurType de document : MonographieCollection : Lecture notes in mathematics, 2011Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2011Description : 1 vol. (XVII-296 p.) : fig. ; 24 cmISBN: 9783642162855.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 287-292. Index.Sujet MSC : 53-02, Research exposition (monographs, survey articles) pertaining to differential geometry
53Exx, Differential geometry - Geometric evolution equations
35K55, PDEs - Parabolic equations and parabolic systems, Nonlinear parabolic equations
53C20, Global differential geometry, Global Riemannian geometry, including pinching
En-ligne : Springerlink | Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
53 AND (Browse shelf(Opens below)) Available 12201-01

Bibliogr. p. 287-292. Index

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. (Source : Springer)

There are no comments on this title.

to post a comment.