From objects to diagrams for ranges of functors / Pierre Gillibert, Friedrich Wehrung

Auteur principal : Gillibert, Pierre, 1983-, AuteurCo-auteur : Wehrung, Friedrich, 1961-, AuteurType de document : MonographieCollection : Lecture notes in mathematics, 2029Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2011Description : 1 vol. (X-158 p.) : fig. ; 24 cmISBN: 9783642217739.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 143-146. Index.Sujet MSC : 18-02, Research exposition (monographs, survey articles) pertaining to category theory
18Axx, Category theory; homological algebra - General theory of categories and functors
18C35, Category theory; homological algebra - Categories and theories, Accessible and locally presentable categories
08A30, General algebraic systems - Algebraic structures, Subalgebras, congruence relations
06A07, Ordered sets, Combinatorics of partially ordered sets
03E70, Mathematical logic and foundations - Set theory, Nonclassical and second-order set theories
En-ligne : Springerlink | Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
18 GIL (Browse shelf(Opens below)) Available 12202-01

Bibliogr. p. 143-146. Index

This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams. (Source : Springer)

There are no comments on this title.

to post a comment.