From objects to diagrams for ranges of functors / Pierre Gillibert, Friedrich Wehrung
Type de document : MonographieCollection : Lecture notes in mathematics, 2029Langue : anglais.Pays: Allemagne.Éditeur : Berlin : Springer, cop. 2011Description : 1 vol. (X-158 p.) : fig. ; 24 cmISBN: 9783642217739.ISSN: 0075-8434.Bibliographie : Bibliogr. p. 143-146. Index.Sujet MSC : 18-02, Research exposition (monographs, survey articles) pertaining to category theory18Axx, Category theory; homological algebra - General theory of categories and functors
18C35, Category theory; homological algebra - Categories and theories, Accessible and locally presentable categories
08A30, General algebraic systems - Algebraic structures, Subalgebras, congruence relations
06A07, Ordered sets, Combinatorics of partially ordered sets
03E70, Mathematical logic and foundations - Set theory, Nonclassical and second-order set theoriesEn-ligne : Springerlink | Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 18 GIL (Browse shelf(Opens below)) | Available | 12202-01 |
Bibliogr. p. 143-146. Index
This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams. (Source : Springer)
There are no comments on this title.