No physical items for this record

The subject of this remarkable book is a particular case of the second part of Hilbert’s 16th problem understood as the problem of classification of algebraic or analytic varieties with real structures (anti-holomorphic involutions) up to equivariant topological, isotopy or deformation equivalence. Real Enriques surfaces represent one of very few classes of varieties which can be classified completely (other examples are plane curves of small degrees, rational, abelian or K3 surfaces). The contents of the monograph is of interest from various points of view. Concrete classification results reflect important geometric phenomena. One of them is that the deformation class of a real Enriques surface is determined by the topology of its complex conjugation involution. Similar result holds for other classified classes of real algebraic and analytic surfaces. ... (Zentralblatt)

There are no comments on this title.

to post a comment.