Diophantine approximation and abelian varieties : introductory lectures / B. Edixhoven, J.-H. Evertse

Auteur secondaire : Edixhoven, Bas, 1962-, Editeur scientifique • Evertse, Jan-Hendrik, 1958-, Editeur scientifiqueType de document : Livre numériqueCollection : Lecture notes in mathematics, 1566Langue : anglais.Éditeur : Berlin : Springer-Verlag, 1993ISBN: 9783540575283.ISSN: 1617-9692.Sujet MSC : 14G05, Arithmetic problems in algebraic geometry. Diophantine geometry, Rational points
14G40, Arithmetic problems in algebraic geometry. Diophantine geometry, Arithmetic varieties and schemes; Arakelov theory; heights
11G35, Arithmetic algebraic geometry (Diophantine geometry), Varieties over global fields
11Jxx, Number theory - Diophantine approximation, transcendental number theory
14K05, Abelian varieties and schemes, Algebraic theory of abelian varieties
En-ligne : Springerlink | Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Contents: Frits Beukers, Diophantine equations and approximation (1–11); Rob Tijdeman, Diophantine approximation and its applications (13–20); Rob Tijdeman, Roth's theorem (21–30); Jan-Hendrik Evertse, The subspace theorem of W. M. Schmidt (31–50); Johan Huisman, Heights on abelian varieties (51–61); Jaap Top, D. Mumford's "A remark on Mordell's conjecture'' (63–67); Johan de Jong, Ample line bundles and intersection theory (69–76); Marius van der Put, The product theorem (77–82); Carel Faber, Geometric part of Faltings's proof (83–91); Robert Jan Kooman, Faltings's version of Siegel's lemma (93–96); Bas Edixhoven, Arithmetic part of Faltings's proof (97–110); Gerard van der Geer, Points of degree d on curves over number fields (111–116); Frans Oort, "The'' general case of S. Lang's conjecture (after Faltings) (117–122)

There are no comments on this title.

to post a comment.