Complex analysis : in the spirit of Lipman Bers / Rubí E. Rodríguez, Irwin Kra, Jane P. Gilman
Type de document : MonographieCollection : Graduate texts in mathematics, 245Langue : anglais.Pays: Etats Unis.Mention d'édition: 2nd ed.Éditeur : New York : Springer, cop. 2013Description : 1 vol. (XVIII-306 p.) : fig. ; 25 cmISBN: 9781441973221.ISSN: 0072-5285.Bibliographie : Bibliogr. p. 299-300. Index.Sujet MSC : 30-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to functions of a complex variable32-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to several complex variables and analytic spacesEn-ligne : Springerlink | Zentralblatt | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | 30 ROD (Browse shelf(Opens below)) | Available | 12308-01 |
Bibliogr. p. 299-300. Index
This book is intended for a graduate course in complex analysis, where the main focus is the theory of complex-valued functions of a single complex variable. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two- and three-manifolds, and number theory. Complex analysis has connections and applications to many other subjects in mathematics and to other sciences. Thus this material will also be of interest to computer scientists, physicists, and engineers. The book covers most, if not all, of the material contained in Lipman Bers’s courses on first year complex analysis. In addition, topics of current interest, such as zeros of holomorphic functions and the connection between hyperbolic geometry and complex analysis, are explored. In addition to many new exercises, this second edition introduces a variety of new and interesting topics. New features include a section on Bers's theorem on isomorphisms between rings of holomorphic functions on plane domains; necessary and sufficient conditions for the existence of a bounded analytic function on the disc with prescribed zeros; sections on subharmonic functions and Perron's principle; and a section on the ring of holomorphic functions on a plane domain. There are three new appendices: the first is a contribution by Ranjan Roy on the history of complex analysis, the second contains background material on exterior differential calculus, and the third appendix includes an alternate approach to the Cauchy theory. (Source : Springer)
There are no comments on this title.