Number fields and function fields : two parallel worlds / Gerard van der Geer, Ben Moonen, René Schoof
Type de document : Livre numériqueCollection : Progress in mathematics, 239Langue : anglais.Éditeur : Boston : Birkhäuser, 2005ISBN: 9780817644475.ISSN: 0743-1643.Sujet MSC : 11-06, Proceedings, conferences, collections, etc. pertaining to number theory14-06, Proceedings, conferences, collections, etc. pertaining to algebraic geometryEn-ligne : Springerlink
Contents: Gebhard Böckle, Arithmetic over function fields: a cohomological approach (1–38); Theo van den Bogaart and Bas Edixhoven, Algebraic stacks whose number of points over finite fields is a polynomial (39–49); Holger Brenner, On a problem of Miyaoka (51–59); Florian Breuer and Richard Pink, Monodromy groups associated to non-isotrivial Drinfeld modules in generic characteristic (61–69); Keith Conrad, Irreducible values of polynomials: a non-analogy (71–85); Anton Deitmar, Schemes over F1 (87–100); Christopher Deninger and Annette Werner, Line bundles and p-adic characters (101–131); Gerd Faltings, Arithmetic Eisenstein classes on the Siegel space: some computations (133–166); Urs Hartl, Uniformizing the stacks of abelian sheaves (167–222); Robin de Jong, Faltings’ delta-invariant of a hyperelliptic Riemann surface (223–236); Kai Köhler, A Hirzebruch proportionality principle in Arakelov geometry (237–268); Ulf Kühn, On the height conjecture for algebraic points on curves defined over number fields (269–277); Jeffrey C. Lagarias, A note on absolute derivations and zeta functions (279–285); Vincent Maillot and Damian Roessler, On the order of certain characteristic classes of the Hodge bundle of semi-abelian schemes (287–310); Damian Roessler, A note on the Manin-Mumford conjecture (311–318).
There are no comments on this title.