Torsors, reductive group schemes and extended affine Lie algebras / Philippe Gille, Arturo Pianzola
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 1063Langue : anglais.Pays: Etats Unis.Éditeur : Providence (R.I.) : American Mathematical Society, 2013Description : 1 vol. (V-112 p.) ; 26 cmISBN: 9780821887745.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 109-112.Sujet MSC : 17B67, Lie algebras and Lie superalgebras, Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras11E72, Forms and linear algebraic groups, Galois cohomology of linear algebraic groups
14L30, Algebraic geometry - Algebraic groups, Group actions on varieties or schemes (quotients)
14E20, Algebraic geometry - Birational geometry, CoveringsEn-ligne : Hal | MathSciNet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 12350-01 |
Bibliogr. p. 109-112
We give a detailed description of the torsors that correspond to multiloop algebras. These algebras are twisted forms of simple Lie algebras extended over Laurent polynomial rings. They play a crucial role in the construction of Extended Affine Lie Algebras (which are higher nullity analogues of the affine Kac-Moody Lie algebras). The torsor approach that we take draws heavily for the theory of reductive group schemes developed by M. Demazure and A. Grothendieck. It also allows us to find a bridge between multiloop algebras and the work of F. Bruhat and J. Tits on reductive groups over complete local fields.
There are no comments on this title.