Séminaire Bourbaki, Volume 2013-2014, exposés 1074-1088
Type de document : SéminaireCollection : Astérisque, 367-368Langue : anglais ; français.Pays: France.Éditeur : Paris : Société Mathématique de France, 2015Description : 1 vol. (X-476 p.) ; 24 cmISBN: 9782856298046.ISSN: 0303-1179.Bibliographie : Bibliogr. en fin d'articles.Sujet MSC : 35L71, PDEs - Hyperbolic equations and hyperbolic systems, Second-order semilinear hyperbolic equations53C20, Global differential geometry, Global Riemannian geometry, including pinching
35B35, Qualitative properties of solutions to partial differential equations, Stability in context of PDEs
11B30, Number theory - Sequences and sets, Arithmetic combinatorics; higher degree uniformity
20F67, Special aspects of infinite or finite groups, Hyperbolic groups and nonpositively curved groupsEn-ligne : SMF - texte intégral
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Réserve | Séries SMF 367/368 (Browse shelf(Opens below)) | Available | 12387-01 |
Bibliogr. en fin d'articles
Some partial differential equations admit a critical exponent of regularity under which the Cauchy problem is considered ill-posed, thanks to a scaling argument introduced for the first time by Ginibre and Velo. In some cases this conjecture was proved (e.g., for the semilinear wave equation or the nonlinear Schrödinger equation, by Lebeau or by Christ-Colliander and Tao). We will explain how N. Burq and N. Tzvetkov however build local solutions (which are global in some cases) for such equations, for almost all initial data randomly selected, from a class of regularity below the threshold of critical regularity. (SMF)
There are no comments on this title.