Séminaire Bourbaki, Volume 2013-2014, exposés 1074-1088

Auteur principal collectivité : Séminaire Bourbaki, AuteurType de document : SéminaireCollection : Astérisque, 367-368Langue : anglais ; français.Pays: France.Éditeur : Paris : Société Mathématique de France, 2015Description : 1 vol. (X-476 p.) ; 24 cmISBN: 9782856298046.ISSN: 0303-1179.Bibliographie : Bibliogr. en fin d'articles.Sujet MSC : 35L71, PDEs - Hyperbolic equations and hyperbolic systems, Second-order semilinear hyperbolic equations
53C20, Global differential geometry, Global Riemannian geometry, including pinching
35B35, Qualitative properties of solutions to partial differential equations, Stability in context of PDEs
11B30, Number theory - Sequences and sets, Arithmetic combinatorics; higher degree uniformity
20F67, Special aspects of infinite or finite groups, Hyperbolic groups and nonpositively curved groups
En-ligne : SMF - texte intégral
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Séminaire Séminaire CMI
Réserve
Séries SMF 367/368 (Browse shelf(Opens below)) Available 12387-01

Bibliogr. en fin d'articles

Some partial differential equations admit a critical exponent of regularity under which the Cauchy problem is considered ill-posed, thanks to a scaling argument introduced for the first time by Ginibre and Velo. In some cases this conjecture was proved (e.g., for the semilinear wave equation or the nonlinear Schrödinger equation, by Lebeau or by Christ-Colliander and Tao). We will explain how N. Burq and N. Tzvetkov however build local solutions (which are global in some cases) for such equations, for almost all initial data randomly selected, from a class of regularity below the threshold of critical regularity. (SMF)

There are no comments on this title.

to post a comment.