Complex Monge-Ampère equations and geodesics in the space of Kähler metrics / Vincent Guedj
Type de document : Livre numériqueCollection : Lecture notes in mathematics, 2038Langue : anglais.Éditeur : New York : Springer, cop. 2012ISBN: 9783642236686.ISSN: 0075-8434.Sujet MSC : 32W20, Differential operators in several variables, Complex Monge-Ampère operators32U05, Several complex variables and analytic spaces - Pluripotential theory, Plurisubharmonic functions and generalizations
32Q15, Several complex variables and analytic spaces - Complex manifolds, Kähler manifolds
32Q20, Several complex variables and analytic spaces - Complex manifolds, Kähler-Einstein manifolds
32Q25, Several complex variables and analytic spaces - Complex manifolds, Calabi-Yau theory (complex-analytic aspects)En-ligne : Springerlink | zbMath
Contents:
Vincent Guedj, "Introduction”, 1–10.
Vincent Guedj and Ahmed Zeriahi, "Dirichlet problem in domains of Cn”, 13–32.
Romain Dujardin and Vincent Guedj, "Geometric properties of maximal psh functions”, 33–52.
François Delarue, "Probabilistic approach to regularity”, 55–198.
Zbigniew Błocki, "The Calabi-Yau theorem”, 201–227.
Boris Kolev, "The Riemannian space of Kähler metrics”, 231–255.
Sébastien Boucksom, "Monge-Ampère equations on complex manifolds with boundary”, 257–282.
Robert Berman [Robert J. Berman] and Julien Keller, "Bergman geodesics”, 283–302.
There are no comments on this title.