A free boundary problem for the localization of eigenfunctions / Guy David, Marcel Filoche, David Jerison, Svitlana Mayboroda

Auteur principal : David, Guy, 1957-, AuteurType de document : MonographieCollection : Astérisque, 392Langue : anglais.Pays: France.Éditeur : Paris : Société Mathématique de France, cop. 2017Description : 1 vol. (203 p.) ; 24 cmISBN: 978856298633.ISSN: 0303-1179.Sujet MSC : 49Q20, Calculus of variations and optimal control; optimization - Manifolds and measure-geometric topics, Variational problems in a geometric measure-theoretic setting
35B65, Qualitative properties of solutions to partial differential equations, Smoothness and regularity of solutions to PDEs
En-ligne : SMF - texte intégral
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
Séries SMF 392 (Browse shelf(Opens below)) Available 12416-01

We study a variant of the Alt, Caffarelli, and Friedman free boundary problem, with many phases and a slightly different volume term, which we originally designed to guess the localization of eigenfunctions of a Schrödinger operator in a domain. We prove Lipschitz bounds for the functions and some nondegeneracy and regularity properties for the domains

There are no comments on this title.

to post a comment.