A free boundary problem for the localization of eigenfunctions / Guy David, Marcel Filoche, David Jerison, Svitlana Mayboroda
Type de document : MonographieCollection : Astérisque, 392Langue : anglais.Pays: France.Éditeur : Paris : Société Mathématique de France, cop. 2017Description : 1 vol. (203 p.) ; 24 cmISBN: 978856298633.ISSN: 0303-1179.Sujet MSC : 49Q20, Calculus of variations and optimal control; optimization - Manifolds and measure-geometric topics, Variational problems in a geometric measure-theoretic setting35B65, Qualitative properties of solutions to partial differential equations, Smoothness and regularity of solutions to PDEsEn-ligne : SMF - texte intégral
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
![]() |
CMI Salle 1 | Séries SMF 392 (Browse shelf(Opens below)) | Available | 12416-01 |
We study a variant of the Alt, Caffarelli, and Friedman free boundary problem, with many phases and a slightly different volume term, which we originally designed to guess the localization of eigenfunctions of a Schrödinger operator in a domain. We prove Lipschitz bounds for the functions and some nondegeneracy and regularity properties for the domains
There are no comments on this title.