Formes de Pfaff. Classe et perturbations / Fernando Varela
Type de document : ThèseLangue : français ; espagnol.Pays: France.Éditeur : [S.l.] : [s.n.], 1975Description : 61 vol. (60 p.) ; 30 cmBibliographie : Bibliogr. p. 59-60.Sujet MSC : 58A17, Global analysis, analysis on manifolds - General theory of differentiable manifolds, Pfaffian systems58K25, Global analysis, analysis on manifolds - Theory of singularities and catastrophe theory, Stability theory for manifolds
58A10, Global analysis, analysis on manifolds - General theory of differentiable manifolds, Differential forms in global analysis
97-02, Research exposition (monographs, survey articles) pertaining to mathematics educationNote de thèse: Thèse de doctorat ès sciences, mathématiques, 1975, université Louis Pasteur (Strasbourg)En-ligne : Numdam Item type:

Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|
CMI Salle S | Thèses VAR (Browse shelf(Opens below)) | Available | 05714-01 |
Bibliogr. p. 59-60
Thèse de doctorat ès sciences mathématiques 1975 université Louis Pasteur (Strasbourg)
n this paper we consider the behavior, by C 0 -perturbations, of the class of Pfaffian forms. The main results are the following:1) Let A be the set of pfaffian forms in a compact manifold which admit the global expression f d g + d h . Then A is C 0 -dense in the set of pfaffian forms on the manifold.2) Let ω be a contact form in a 3-dimensional manifold. Then every contact form in a small C 0 -neighborhood of ω defines the same orientation that ω .3) Being n ≥ 2 , there exists in every compact subset of R 2 n + 1 a contact form ω such that every C 0 -neighborhood of ω contains a contact form with opposite orientation.
There are no comments on this title.