Fixed points and topological degree in nonlinear analysis / Jane Cronin
Type de document : MonographieCollection : Mathematical surveys, 11Langue : anglais.Pays: Etats Unis.Mention d'édition: reprint with correctionsÉditeur : Providence : American Mathematical Society, 1972Description : 1 vol. (XII-198 p.) ; 26 cmISBN: 9780821815113.ISSN: 0076-5376.Bibliographie : Bibliogr. p.186-193. Index.Sujet MSC : 47H10, Operator theory - Nonlinear operators and their properties, Fixed-point theorems47-02, Research exposition (monographs, survey articles) pertaining to operator theoryEn-ligne : Zentralblatt | MathScinet
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Monographie | CMI Salle 1 | 47 CRO (Browse shelf(Opens below)) | Available | 05683-01 |
The topological methods based on fixed-point theory and on local topological degree which have been developed by Leray, Schauder, Nirenberg, Cesari and others for the study of nonlinear differential equations are here described in detail, beginning with elementary considerations. The reader is not assumed to have any knowledge of topology beyond the theory of point sets in Euclidean n-space which ordinarily forms part of a course in advanced calculus.
The methods are first developed for Euclidean n-space and applied to the study of existence and stability of periodic and almost-periodic solutions of systems of ordinary differential equations, both quasi-linear and with "large" nonlinearities. Then, after being extended to infinite-dimensional "function-spaces", these methods are applied to integral equations, partial differential equations and further problems concerning periodic solutions of ordinary differential equations. (AMS)
Bibliogr. p.186-193. Index
There are no comments on this title.