Formules de caractères pour les algèbres de Kac-Moody générales / Olivier Mathieu
Type de document : MonographieCollection : Astérisque, 159-160Langue : français.Pays: France.Éditeur : Paris : Société Mathématique de France, 1988Description : 1 vol. (267 p.) : ill. ; 24 cmISSN: 0303-1179.Bibliographie : Bibliogr. p. 262-266.Sujet MSC : 17B67, Lie algebras and Lie superalgebras, Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras17B10, Lie algebras and Lie superalgebras, Representations, algebraic theory (weights)
14M15, Algebraic geometry - Special varieties, Grassmannians, Schubert varieties, flag manifolds
17B65, Lie algebras and Lie superalgebras, Infinite-dimensional
14Fxx, Algebraic geometry - (Co)homology theory in algebraic geometryEn-ligne : Numdam Item type:

Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|
CMI Couloir | Séries SMF 159/160 (Browse shelf(Opens below)) | Available | 09667-01 |
The author extends Demazure's character formula to any Kac-Moody algebra (not necessarily symmetrizable). From this, using an argument of G. Heckman, he gets the Weyl character formula. Underlying these results, there is the identification of the characters with some Euler-Poincaré characteristic dimensions and the proof of vanishing theorems for the cohomology of semi-ample line bundles over the Schubert varieties. This machinery also allows him to prove a generalization of the Bott-Borel- Weyl theorem and Kempf's theorem, as well as some properties of the Schubert varieties. (Zentralblatt)
Bibliogr. p. 262-266
There are no comments on this title.