On the André-Quillen cohomology of commutative F2-algebras / Paul G. Goerss
Type de document : MonographieCollection : Astérisque, 186Langue : anglais.Pays: France.Éditeur : Paris : Société Mathématique de France, 1990Description : 1 vol. (169 p.) ; 24 cmISSN: 0303-1179.Bibliographie : Notes bibliogr. p. 167-168.Sujet MSC : 13-02, Research exposition (monographs, survey articles) pertaining to commutative algebra13D03, Homological methods in commutative ring theory, (Co)homology of commutative rings and algebras
18N50, Higher categories and homotopical algebra, Simplicial sets, simplicial objects
13E10, Chain conditions, finiteness conditions in commutative ring theory, Commutative Artinian rings and modules, finite-dimensional algebrasEn-ligne : Résumé Item type:

Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|
CMI Couloir | Séries SMF 186 (Browse shelf(Opens below)) | Available | 10282-01 |
Notes bibliogr. p. 167-168
The paper consists of 5 chapter. The first one is a helpful overview of the results, and the second one contains the basic definitions and the homotopy theory of simplicial algebras. The third chapter concerns the André-Quillen holomogy and cohomology and defines the suspension of a simplicial algebra. In the fourth chapter the counterpart to Quillen's spectral sequence from homology to homotopy and its consequences is described, and in the last chapter the cohomology of abelian objects are studied. (Zentralblatt)
There are no comments on this title.