Normal view MARC view ISBD view

Résolution numérique des équations aux dérivées partielles : différences finies, éléments finis, méthode des singularités : de la physique, de la mécanique et des sciences de l'ingénieur / Daniel Euvrard

Auteur principal : Euvrard, Daniel, 19..-1994, AuteurType de document : MonographieCollection : Enseignement de la physiqueLangue : français.Pays : France.Mention d'édition: 2ème édition revue et complétéeÉditeur : Paris : Masson, 1990Description : 1 vol. (341 p.) ; 25 cmISBN : 2225821283.ISSN : 0992-5538.Bibliographie : Bibliogr. p. [338]-339. Index.Sujet MSC : 65Mxx, Numerical analysis, Partial differential equations, initial value and time-dependent initial-boundary value problems
65Hxx, Numerical analysis, Nonlinear algebraic or transcendental equations
35K05, Partial differential equations -- Parabolic equations and systems, Heat equation
35L05, Partial differential equations -- Hyperbolic equations and systems, Wave equation
35J05, Partial differential equations -- Elliptic equations and systems, Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Salle E
Manuels EUV (Browse shelf) Available 10411-01
CMI
Salle E
Manuels EUV (Browse shelf) Available 10411-02

La première partie de ce cours, qui suit une brève introduction concernant les équations aux dérivées partielles des deux premiers ordres, se rapporte aux schémas aux différences finies. Ceux-ci sont appliqués d'abord à l'équation de Laplace. L'auteur traite ensuite l'équation de la chaleur et celle des cordes vibrantes. Dans ce contexte les notions de consistance, de stabilité et de convergence sont commentées. L'analyse de la stabilité se fait au moyen de la méthode de Fourier et des estimations d'énergie. Des solutions faibles interviennent à propos de l'équation de Burgers. Le schéma des directions alternées se présente pour les équations de Navier- Stokes 2D. La deuxième partie du cours est dédiée à la méthode des éléments finis. Le problème continu est mis sous forme variationnelle et se ramène à une minimisation. Par ailleurs l'auteur introduit de façon intuitive un procédé d'éléments finis conformes, consistant en une interpolation par morceaux, en l'occurrence par des triangles. L'utilisation d'un maillage régulier permet de faire “à la main” l'assemblage de la matrice de rigidité; ensuite une technique d'intégration numérique engendre un schéma en termes finis. Une étude plus poussée de la méthode considérée se rapporte aux maillages triangulaires et quadrilatéraux. L'intégration numérique est effectuée au moyen de la formule de Gauss-Legendre à n+1 points. D'autre part l'auteur se propose d'appliquer les méthodes variationnelles aux problèmes classiques de l'élastostatique et de l'élastodynamique. Les raissonnements d'analyse numérique sont interprétés en termes de mécanique. A propos d'un modèle d'élasticité l'auteur introduit le concept de mode propre. Le présent cours contient une troisième partie traitant de la résolution des problèmes en domaine non borné. Cette partie est consacrée notamment à la méthode des singularités et contient diverses représentations intégrales de Green pour des fonctions harmoniques. (Zentralblatt)

Bibliogr. p. [338]-339. Index

There are no comments for this item.

Log in to your account to post a comment.