Homotopy formulas in the tangential Cauchy-Riemann complex / François Treves

Auteur principal : Treves, François, 1930-, AuteurType de document : MonographieCollection : Memoirs of the American Mathematical Society, 434Langue : anglais.Pays: Etats Unis.Éditeur : Providence : American Mathematical Society, 1990Description : 1 vol. (VIII-121 p.) ; 26 cmISBN: 9780821824962; 0821824961.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 121.Sujet MSC : 35N15, Overdetermined problems for PDEs and systems of PDEs, ∂¯-Neumann problems and formal complexes in context of PDEs
58J10, Global analysis, analysis on manifolds - PDEs on manifolds; differential operators, Differential complexes; elliptic complexes
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current library Call number Status Date due Barcode
 Monographie Monographie CMI
Salle 1
Séries AMS (Browse shelf(Opens below)) Available 10423-01

Conjugation of the classical kernels of Bochner-Martinelli and Koppelman- Leray with the FBI minitransform - a simplified version of the Fourier- Bros-Iagolnitzer transform - is used to construct homotopy operators in the tangential Cauchy-Riemann complex. On a real hypersurface in complex space the presence of supporting manifolds is exploited to modify the phase function and ensure the positivity of its imaginary part. (Zentralblatt)

Bibliogr. p. 121

There are no comments on this title.

to post a comment.