Homotopy formulas in the tangential Cauchy-Riemann complex / François Treves
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 434Langue : anglais.Pays : Etats Unis.Éditeur : Providence : American Mathematical Society, 1990Description : 1 vol. (VIII-121 p.) ; 26 cmISBN : 9780821824962; 0821824961.ISSN : 0065-9266.Bibliographie : Bibliogr. p. 121.Sujet MSC : 35N15, Partial differential equations -- Overdetermined systems, ∂¯-Neumann problem and generalizations; formal complexes58J10, Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators, Differential complexes; elliptic complexes
Current location | Call number | Status | Date due | Barcode |
---|---|---|---|---|
CMI Couloir | Séries AMS (Browse shelf) | Available | 10423-01 |
Conjugation of the classical kernels of Bochner-Martinelli and Koppelman- Leray with the FBI minitransform - a simplified version of the Fourier- Bros-Iagolnitzer transform - is used to construct homotopy operators in the tangential Cauchy-Riemann complex. On a real hypersurface in complex space the presence of supporting manifolds is exploited to modify the phase function and ensure the positivity of its imaginary part. (Zentralblatt)
Bibliogr. p. 121
There are no comments for this item.