Introduction au calcul des variations / Bernard Dacorogna

Auteur principal : Dacorogna, Bernard, 1953-, AuteurType de document : MonographieCollection : Cahiers mathématiques de l'Ecole Polytechnique Fédérale de LausanneLangue : français.Pays: Swisse.Éditeur : Lausanne : Presses Polytechniques et Universitaires Romandes, 1992Description : 1 vol. (XIII-213 p.) ; 21 cmISBN: 9782880742379.Bibliographie : Bibliogr. p. 205-207. Index.Sujet MSC : 49-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to calculus of variations and optimal control
49J52, Existence theories in calculus of variations and optimal control, Nonsmooth analysis
49Q05, Calculus of variations and optimal control; optimization - Manifolds and measure-geometric topics, Minimal surfaces and optimization
Item type: Monographie
Tags from this library: No tags from this library for this title. Log in to add tags.
Current library Call number Status Date due Barcode
Salle 2
Manuels DAC (Browse shelf(Opens below)) Available 10784-01
Salle 2
Manuels DAC (Browse shelf(Opens below)) Available 10784-02

The book has seven chapters: in the introduction various examples of problems of the calculus of variations are given, in chapter 1 the author introduces the function spaces used afterwards and some notions of convex analysis. In the second chapter he presents for the minimum of an integral functional the classical conditions of Euler-Lagrange, Hamilton- Jacobi, Weierstrass and Hilbert. In the following chapter the author exposes the direct method for the existence of a minimum in some Sobolev space for a convex and coercive integrand. The regularity results in particular for unidimensional integrals are exposed in chapter 4. In chapter 5 the author studies the problem of minimal surfaces, where he cannot use results of chapter 4: he examines in detail the bidimensional case, giving some generalities on surfaces and he exposes the Douglas theorem for the Plateau problem. The last chapter is reserved for isoperimetric inequalities in two or more dimensions. The work is a rigorous introduction to the calculus of variations for graduate students. (Zentralblatt)

Bibliogr. p. 205-207. Index

There are no comments on this title.

to post a comment.