Normal view MARC view ISBD view

Asymptotic theory of finite dimensional normed spaces, With an appendix, Isoperimetric inequalities in Riemannian manifolds / by M. Gromov / Vitali D. Milman, Gideon Schechtman

Auteur principal : Milman, Vitali Davidovich, 1939-, AuteurCo-auteur : Schechtman, Gideon, 1947-, Auteur • Gromov, Mikhail, 1943-, AuteurType de document : MonographieCollection : Lecture notes in mathematics, 1200Langue : anglais.Pays : Allemagne.Éditeur : Berlin : Springer-Verlag, 1986Description : 1 vol. (V-156 p.) ; 24 cmISBN : 3540167692.ISSN : 0075-8434.Bibliographie : Bibliogr. p. [151]-156. Index.Sujet MSC : 46B25, Functional analysis - Normed linear spaces and Banach spaces; Banach lattices, Classical Banach spaces in the general theory
46-02, Research exposition (monographs, survey articles) pertaining to functional analysis
46B20, Functional analysis - Normed linear spaces and Banach spaces; Banach lattices, Geometry and structure of normed linear spaces
28C20, Measure and integration - Set functions and measures on spaces with additional structure, Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
En-ligne : Springerlink | Zentralblatt | MathSciNet
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
Salle R
46 MIL (Browse shelf) Available 10916-01

Bibliogr. p. [151]-156. Index

This book deals with the geometrical structure of finite dimensional normed spaces as the dimension grows to infinity. This is a part of what came to be known as the local theory of Banach spaces. The purpose of this book is to introduce the reader to some of the results, problems and mainly methods developed in the local theory. The contents of the book. Introduction. Part I: The concentration of measure phenomenon in the theory of normed spaces. Part II: Type and cotype of normed spaces ... (Zentralblatt)

There are no comments for this item.

Log in to your account to post a comment.