Normal view MARC view ISBD view

Groupes algèbres et géométrie, Tome 2 / Jean-Marie Arnaudiès, José Bertin

Auteur principal : Arnaudiès, Jean-Marie, 1941-, AuteurCo-auteur : Bertin, José, 1950-, AuteurType de document : MonographieLangue : français.Pays : France.Éditeur : Paris : Ellipses, cop. 1995Description : 1 vol. (XVII-760 p.) : fig. ; 26 cmISBN : 2729845941.Bibliographie : Bibliogr. p. 749-750. Index.Sujet MSC : 13-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to commutative algebra
15-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to linear algebra
20-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to group theory
20H15, Group theory - Other groups of matrices, Other geometric groups, including crystallographic groups
16-01, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to associative rings and algebras
En-ligne : Zentralblatt
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Salle E
Manuels ARN (Browse shelf) Available 11445-02
CMI
Salle E
Manuels ARN (Browse shelf) Consultation sur place 11445-01

Bibliogr. p. 749-750. Index

Ce tome 2 est consacré à la pénétration des méthodes algébriques en Géométrie. Jean-Marie Arnaudiès et José Bertin tiennent les promesses faites non seulement aux candidats aux Agrégations externe et interne de Mathématiques, mais au-delà, à tous ceux que passionnent cette science ou qui s'y destinent, comme les étudiants de deuxième et troisième cycle des Universités. Les auteurs ont bâti ce tome 2 autour de deux théories majeures : la cristallographie, et la représentation linéaire des groupes finis, qui mettent en œuvre tous les outils algébriques progressivement introduits : produit tensoriel, groupes topolo-giques, modules sur les anneaux principaux, réseaux, algèbres semi-simples… De nombreux exemples, dont beaucoup non-évidents, appuient le texte. En outre, les auteurs démontrent cinq grands théorèmes qui ne sont que très rarement mis à la disposition d'un Public aussi large : les deux théorèmes de Bieberbach en cristallographie (le topologique, et celui de finitude), les théorèmes de finitude de Hermite-Minkowski et de Jordan-Zassenhaus, et enfin le théorème de Frobenius qui donne le calcul explicite des caractères irréductibles des groupes symétriques ; ce dernier théorème couronne une étude minutieuse et exhaustive des représentations des groupes symétriques. Ce livre contient notamment : 329 théorèmes, 218 propositions, 115 corollaires et 65 lemmes, avec leur démonstration ; 161 définitions et 106 exemples développés. Il est illustré de 36 figures. (Source : Ellipses)

There are no comments for this item.

Log in to your account to post a comment.