A topological Chern-Weil theory / Anthony V. Phillips, David A. Stone
Type de document : MonographieCollection : Memoirs of the American Mathematical Society, 504Langue : anglais.Pays: Etats Unis.Éditeur : Providence : American Mathematical Society, 1993Description : 1 vol. (VI-79 p.) ; 26 cmISBN: 0821825666.ISSN: 0065-9266.Bibliographie : Bibliogr. p. 77-79.Sujet MSC : 57T30, Manifolds and cell complexes - Homology and homotopy of topological groups and related structures, Bar and cobar constructions57R22, Manifolds and cell complexes - Differential topology, Topology of vector bundles and fiber bundles
57R20, Manifolds and cell complexes, Characteristic classes and numbers in differential topology
55R40, Fiber spaces and bundles in algebraic topology, Homology of classifying spaces and characteristic classes
53C05, Global differential geometry, Connections, general theory
Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Monographie | CMI Salle 1 | Séries AMS (Browse shelf(Opens below)) | Available | 11564-01 |
The authors examine the general problem of computing characteristic invariants of principal bundles whose structural group is a topological group (but not necessarily a Lie group). They give a completely topological local method for computing representative cocycles for real characteristic classes under the hypothesis that the structural group has real cohomology, finitely generated as an R-module. (Zentralblatt)
Bibliogr. p. 77-79
There are no comments on this title.