Normal view MARC view ISBD view

Periodic Hamiltonian flows on four dimensional manifolds / Yael Karshon

Auteur principal : Karshon, Yael, 1964-, AuteurType de document : MonographieCollection : Memoirs of the American Mathematical Society, 672Langue : anglais.Pays : Etats Unis.Éditeur : Providence : American Mathematical Society, 1999Description : 1 vol. (VIII-71 p.) : fig. ; 26 cmISBN : 0821811819.ISSN : 0065-9266.Bibliographie : Bibliogr. p. 69-71.Sujet MSC : 70H12, Mechanics of particles and systems -- Hamiltonian and Lagrangian mechanics, Periodic and almost periodic solutions
70G45, Mechanics of particles and systems -- General models, approaches, and methods, Differential-geometric methods
37N05, Dynamical systems and ergodic theory -- Applications, Dynamical systems in classical and celestial mechanics
En-ligne : ArXiv
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Couloir
Séries AMS (Browse shelf) Available 00327-01

A complete classification of Hamiltonian circle actions (that is, periodic Hamiltonian flows or Hamiltonian S 1 -spaces) on compact 4-dimensional manifolds is given: first studying how to characterize the isomorphic S 1 -spaces, and second, listing all these spaces and determining the kind of invariant symplectic forms with which the manifolds are endowed. In this way, this work completes some previous ones on the same subject: see e.g.: M. Audin [in Géométrie symplectique et mécanique, Colloq. Int. Sémin. Sud-Rhodan. Géom. V, La Grande Motte/Fr. 1988, Lect. Notes Math. 1416, 1-25 (1990; Zbl 0699.58031)], and K. Ahara and A. Hattori [J. Fac. Sci., Univ. Tokyo, Sect. IA 38, 251-298 (1991; Zbl 0749.53018)]. It is also proved that all these compact 4-dimensional Hamiltonian S 1 -spaces are Kähler manifolds, but this result does not hold for higher-order dimensional manifolds. (Zentralblatt)

Bibliogr. p. 69-71

There are no comments for this item.

Log in to your account to post a comment.