Normal view MARC view ISBD view

Une méthode particulaire stochastique à poids aléatoires pour l'approximation de solutions statistiques d'équations de McKean-Vlasov-Fokker-Planck / Olivier Vaillant ; sous la direction de Denis Talay

Auteur principal : Vaillant, Olivier, AuteurAuteur secondaire : Talay, Denis, 1955-, Directeur de thèseAuteur secondaire collectivité : Université de Provence, Etablissement de soutenanceType de document : ThèseLangue : français.Pays : France.Éditeur : [S.l.] : [s.n.], 2000Description : 1 vol. (153 p.) ; 30 cmBibliographie : Bibliogr. p. 151-153.Sujet MSC : 60K35, Probability theory and stochastic processes -- Special processes, Interacting random processes; statistical mechanics type models; percolation theory
65C35, Numerical analysis -- Probabilistic methods, simulation and stochastic differential equations, Stochastic particle methods
35Q30, Partial differential equations -- Equations of mathematical physics and other areas of application, Navier-Stokes equations
35Q35, Partial differential equations -- Equations of mathematical physics and other areas of application, PDEs in connection with fluid mechanics
97A70, Mathematics education - General, mathematics and education, Theses and postdoctoral theses
Note de thèse: Thèse de doctorat, mathématiques appliquées, 2000, université de Provence
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Salle S
Thèses VAI (Browse shelf) Available 00405-01

Bibliogr. p. 151-153

Thèse de doctorat mathématiques appliquées 2000 université de Provence

Les équations aux dérivées partielles (E.D.P.) à condition initiale aléatoire interviennent dans la modélisation de certains phénomènes physiques complexes tels que la turbulence. La caractérisation de la loi des solutions, ou solution statistique, a fait l'objet de nombreux travaux théoriques. Toutefois, il est souvent difficile d'estimer la précision des méthodes usuelles de simulation des solutions moyennes de l'E.D.P, ou moments de la solution statistique. Cette thèse est constituée de deux parties : nous commençons par présenter la théorie des solutions statistiques, en particulier dans le cas de l'équation du tourbillon d'un fluide incompressible dans le plan. Cet exemple nous amène à considérer, dans la seconde partie de ce mémoire, le problème modèle d'une équation de McKean-Vlasov à condition initiale aléatoire. En supposant que les coefficients de l'équation sont lipschitziens et bornés, nous montrons qu'elle admet une unique solution statistique dont les moments peuvent être représentés à l'aide d'un processus de diffusion non linéaire. Nous déduisons de cette interprétation une méthode particulaire stochastique pour la simulation des moments. Son originalité est que les poids d'interaction entre les particules sont des variables aléatoires, définies à partir d'estimateurs non paramétriques d'une fonction de régression. Enfin, nous étudions la vitesse de convergence (théorique et numérique) de la méthode pour différentes familles de poids.

There are no comments for this item.

Log in to your account to post a comment.