Normal view MARC view ISBD view

Applications of Lie groups to differential equations / Peter J. Olver

Auteur principal : Olver, Peter John, 1952-, AuteurType de document : MonographieCollection : Graduate texts in mathematics, 107Langue : anglais.Pays : Etats Unis.Mention d'édition: 2nd editionÉditeur : New York : Springer, 2000Description : 1 vol. (xxviii-513 p.) : ill. ; 24 cmISBN : 0387950001.ISSN : 0072-5285.Bibliographie : Bibliogr. p. 467-488. Index.Sujet MSC : 22E70, Lie groups, Applications to the sciences; explicit representations
58J40, Partial differential equations on manifolds; differential operators, Pseudodifferential and Fourier integral operators on manifolds
58J70, Partial differential equations on manifolds; differential operators, Invariance and symmetry properties for PDEs on manifolds
35Q53, PDEs of mathematical physics and other areas of application, KdV equations (Korteweg-de Vries equations)
35K05, PDEs - Parabolic equations and parabolic systems, Heat equation
En-ligne : Springerlink - ed. 1986 | Zentralblatt
Tags from this library: No tags from this library for this title. Log in to add tags.
Current location Call number Status Date due Barcode
CMI
Salle R
58 OLV (Browse shelf) Available 00723-02
CMI
Salle R
58 OLV (Browse shelf) Available 00723-01

From the author's Preface to the second Springer-Verlag edition.: “The one substantial addition to the second edition is a short presentation of the calculus of pseudo-differential operators and their use in Shabat's theory of formal symmetries, which provides a powerful, algorithmic method for determining the integrability of evolution equations”.

Bibliogr. p. 467-488. Index

There are no comments for this item.

Log in to your account to post a comment.