Current location Call number Status Date due Barcode
CMI
Couloir
Séries SMF 275 (Browse shelf) Available 00326-01

Bibliogr. Index

Torsion en famille et fonctions de Morse
À un fibré plat, on peut associer des classes caractéristiques impaires réelles. Bismut et Lott ont montré un théorème de Riemann-Roch-Grothendieck, quand on prend l'image directe d'un fibré plat par une submersion propre. Ils ont aussi construit des invariants secondaires, les formes de torsion analytique en théorie de de Rham, qui sont des formes paires sur la base de la fibration considérée. La composante de degré de ces formes est la torsion analytique de Ray-Singer.

Le présent article a pour objet:

d'étendre la théorie des formes de torsion analytique en situation équivariante.

de normaliser les formes de torsion analytique.

d'établir des résultats de rigidité, qui montrent qu'à des termes explicites calculables localement près, les formes de torsion ne varient pas par déformation de la connexion plate considérée, et ceci en degré positif.

d'évaluer les formes de torsion analytique équivariantes, sous l'hypothèse qu'il existe un champ de gradient de Morse-Smale dans les fibres.

d'évaluer les formes de torsion équivariantes des fibrés en sphères provenant de fibrés vectoriels.
Le résultat principal généralise des résultats obtenus par Cheeger, Müller, et Lott-Rothenberg et Bismut-Zhang sur le lien entre torsion analytique et torsion de Reidemeister, et aussi des calculs de Bunke pour des fibrés en sphères. (SMF)

There are no comments for this item.

Log in to your account to post a comment.